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Abstract
This paper presents the methodology and outcomes of a Named Entity Recognition and Linking multilingual news
benchmark that leverages both Deep learning approaches by using a fine-tuned transformer model to detect
mentions of persons, locations and organisations in text, and Linguistic Linked Open Data, through the use of
Wikidata to disambiguate mentions and link them to ontology entries. It shows all the advantages of combining
both approaches, not only for building the benchmark but also for fine-tuning detection models. We also insist on
several perspectives of research to improve the accuracy of a combining system and go further on leveraging the
complementary approaches.
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1. Introduction

Named entity recognition (NER), disambiguation,
and linking (abusively dubbed as Named Entity
Linking or NEL) represent a trio of critical tasks
within the field of natural language processing
(NLP). These tasks are concerned with the extrac-
tion and classification of specific references from
text, including but not limited to individuals, orga-
nizations, geographical locations, and other entity
mentions such as dates and emails.

Following the progress in natural language pro-
cessing, the current state-of-the-art systems are all
based on deep learning systems, especially based
on the Transformer architecture generating pre-
trained models then fine-tuned for the task. But it
appears that these systems, used alone, still strug-
gle when context is sparse or noisy or far from the
training data characteristics. For example, in the
last Multilingual Complex Named Entity Recogni-
tion competition (SemEval 2023 (SemEval 2023
task 2: MultiCoNER II), the winning system does
not only leverage these pre-trained contextual mod-
els, but also multilingual lexical knowledge bases,
namely Wikipedia and Wikidata, especially to dis-
ambiguate and link mentions of named entities to
knowledge bases entries. The combination con-
sists in this case in creating sentence embeddings
from Wikipedia instances linked to title entries, re-
trieve the most similar contexts to the one to anno-
tate (semantic search) and then feed a Conditional
Random Field (CRF) to generate the token anno-
tation. In the same vein, current cutting edge sys-
tems (e.g. Wikineural) combine pre-trained models
with fine-tuning from silver-annotated versions of

Wikipedia mentions of Named Entities.
Additionally, and surprisingly provided that NER

and NEL tasks are on the table for dozen of years,
if several reputed benchmarks exist for NER eval-
uation, NEL evaluation benchmark are still far be-
hind, even if a recent work has proposed a silver
dataset (ie a dataset without human validation) from
Wikipedia ((Kubeša and Straka, 2023a)). In this
context, this paper will provide some insights of the
advantages and current limitations of a combination
of Deep Learning (DL) systems and Linked Open
Data (LOD) knowledge bases, from an experiment
aiming to design and compile a new NER and NEL
benchmark, created specifically for the purpose of
evaluating any system of NER/NEL on Multilingual
news textual data.

The paper is further divided into three parts: the
first part presents the existing systems for NER And
NEL and give some key characteristics of these sys-
tems, insisting on the new trend of combining Deep
learning systems and Linked Open Ontologies and
Lexicons. The second part details the methodology
and steps followed to construct this dataset as well
as key figures on it. The third and conclusive part
presents our insights from this experiment on the
DL - LOD combination and some perspectives to
push it even further.

2. Named Entity Recognition and
Linking State-of-The-Art

This section presents the current SOTA models for
NER and NEL, and then the most used knowledge
bases available.

https://multiconer.github.io/
https://multiconer.github.io/
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2.1. Deep learning language Models
In this section, we highlight some key characteris-
tics of State-of-the-Art (SOTA) language models for
NER and NEL, in the context of the Europe Media
Monitor (EMM) we intend to apply them to. SOTA
systems for NER/NEL - as all computational linguis-
tic tasks - all rely on embedding representation and
pre-trained language models (LM). Several com-
peting LMs with desired features (multilinguality,
open source, SOTA on relevant benchmarks) are
available. To name the most prominent ones:

• XLM-Roberta-large (XLM-R) (Conneau et al.,
2019a): this transformer-based masked lan-
guage model is the base model for multilingual
computational tasks. It was trained on one hun-
dred languages, using more than two terabytes
of filtered CommonCrawl data. This model out-
performed one of the first multilingual model,
multilingual BERT (mBERT) (Devlin et al.,
2019). The XLM-R model is still present in
leaderboards as a base (see e.g. XTREME
benchmark, (Hu et al., 2020), and TNER list
of fine-tuned Roberta models (TNER list of
fine-tuned models)). These models have been
fine-tuned on several datasets, as in WikiNEu-
Ral (Tedeschi et al., 2021c), which combines
a multilingual lexical knowledge base (i.e., Ba-
belNet) and transformer-based architectures
(i.e., mBERT) to produce high-quality annota-
tions for multilingual NER. An mBERT model
fine-tuned on this silver dataset reach an over-
all accuracy of 0.80.

• New SOTA multilingual models: these mod-
els exhibit strong performance on multilingual
tasks and should be considered as swiss-knife
pre-trained models. These next-generation
transformer models add new tasks during the
pre-training steps and evaluation leaderboards
show that they enable to gain additional qual-
ity. Among them Turing ULR v6, (Patra et al.,
2022a) adds a new task at the pre-training
step, called cross-lingual contrast (XLCO). The
goal of XLCO is to maximize mutual informa-
tion between the representations of parallel
sentences c1 and c2, i.e., I(c1, c2). It lever-
ages this new task by creating multi bi-texts.
VECO 2.0, (Zhang et al., 2023a), is the most
recent SOTA model on the XTREME bench-
mark, going a step further by aligning not only
sentence but also tokens of the bitexts.

• SOTA Models specific to NER/NEL: these
specialised models are the winners of the
most recent NER/NEL competitions (se-
mEval 2022 task 11: and semEval 2023
task 2:): mLUKE, (Ri et al., 2021a) built on
XML-RoBERTa, and additionally trained on

24 languages with entity representations
taken from Wikipedia. The model consistently
outperforms word-based pre-trained models in
various crosslingual transfer tasks. KB-NER,
(Wang et al., 2022a) multilingual knowledge
base based on Wikipedia to provide related
context information to the named entity recog-
nition (NER) model. Given an input sentence,
the system retrieves related contexts from
the knowledge base. The original input
sentences are then augmented with such
context information, allowing significantly
better contextualized token representations to
be captured. Winner on 10 over 13 subtasks
(semEval 2022 task 11). in the same vein
and a similar architecture, U-RaNER won the
semEval 2023 competition:Github repo.

As can be seen from on-going competition, es-
pecially to adapt the systems to more complex
named entities, new domains and low-resourced
languages, even if NER and NEL have now a long
trail of research, there are still ways to improve the
systems. The last winners of the Multiconer com-
petition show that the main avenue to improve the
current systems is to combine the pre-trained trans-
former models with external knowledge bases, in
two main ways:

• by using directly available structured knowl-
edge bases, i.e. Wikidata, especially the fea-
ture linking entries to their mention variants,
directly at the recognition stage,

• by fine-tuning a secondary transformer model
from a textual knowledge base (Wikipedia be-
ing the most used) and use it as a complemen-
tary resource if the pre-trained model needs
additional context information to detect men-
tions.

2.2. Named Entity Linking Knowledge
bases

We list here the main existing evaluation datasets
again keeping in mind the multilingual and genre
features.

• Mewsli-9 (Botha et al., 2020): this dataset
contains manually labelled WikiNews articles
in 9 different languages. New formulation
for multilingual entity linking, where language-
specific mentions resolve to a language-
agnostic Knowledge Base. A dual encoder
was trained in this new setting, building on
prior work with improved feature representa-
tion, negative mining, and an auxiliary entity-
pairing task, to obtain a single entity retrieval
model that covers 100+ languages and 20 mil-
lion entities. The model outperforms state-of-

https://github.com/asahi417/tner/blob/master/MODEL_CARD.md
https://github.com/asahi417/tner/blob/master/MODEL_CARD.md
https://www.semanticscholar.org/reader/a27e2830ca1a85989ef542aa69a4af797deda276
https://aclanthology.org/2022.semeval-1.196.pdf
https://multiconer.github.io/
https://github.com/modelscope/AdaSeq/tree/master/examples/U-RaNER


33

the-art results from a far more limited cross-
lingual linking task. Rare entities and low-
resource languages pose challenges at this
large-scale.

• Mewsli-X (Ruder et al., 2021a): Mewsli-X is
a multilingual dataset of entity mentions ap-
pearing in WikiNews and Wikipedia articles,
that have been automatically linked to Wiki-
Data entries. The primary use case is to eval-
uate transfer-learning in the zero-shot cross-
lingual setting of the XTREME-R benchmark
suite: fine-tune a pre-trained model on English
Wikipedia examples; evaluate on WikiNews in
other languages — given an entity mention in
a WikiNews article, retrieve the correct entity
from the predefined candidate set by means
of its textual description. Mewsli-X constitutes
a doubly zero-shot task by construction: at
test time, a model has to contend with different
languages and a different set of entities from
those observed during fine-tuning.

• DaMuEL (Kubeša and Straka, 2023b): a large
Multilingual Dataset for Entity Linking contain-
ing data in 53 languages. DaMuEL consists
of two components: a knowledge base that
contains language-agnostic information about
entities, including their claims from Wikidata
and named entity types (PER, ORG, LOC,
EVENT, BRAND, WORK-OF-ART, MANUFAC-
TURED); and Wikipedia texts with entity men-
tions linked to the knowledge base, along with
language-specific text from Wikidata such as
labels, aliases, and descriptions, stored sepa-
rately for each language.

As a matter of fact, even for multipurpose evalu-
ation for LLMs, the WIKIANN benchmark remains
the de facto standard for multilingual evaluation of
core Named Entities, but it is exclusively built from
Wikipedia and is known to contain a lot of errors.
But, with Mewsli-9 and -X and DaMuEL, new silver
standard datasets are built from a combination of
DL models and existing Knowledge bases, namely
Wikipedia, Wikinews and, as an aggregating KB,
Wikidata. This combination of both approaches has
the merit of enabling the building of large datasets
that in turn can be used to fine-tune DL models.
As an inspiration, we will use the DaMUEL dataset
that has been built from Wikipedia, by applying a
similar method to its news counterpart, Wikinews.
We will detail the methodology after a presenta-
tion of State-of-The-Art models for NER and NEL.
That will enable also to support the need of a new
Multilingual News dataset.

3. WiNNL (WikiNews Named entity
recognition and Linking)

This section introduces WiNNL (WikiNews Named
entity recognition and Linking), a new multilingual
NER & NEL benchmark based on Wikinews arti-
cles. Wikinews, a free-content news source from
Wikimedia Foundation, provides a rich and diverse
environment for creating a realistic benchmark as it
incorporates a wide range of topics and languages.
Our benchmark, which for now encompasses 11
European languages, aims to provide a rigorous
evaluation framework for multilingual NER/NEL sys-
tems. It also facilitates an understanding of how
these models perform across different languages
on the specific domain of news articles.

Our approach is inspired by the DaMuEL
Wikipedia based benchmark (Kubeša and Straka,
2023b). In this work, the authors describe a pipeline
to convert Wikipedia articles by detecting entity
types using Wikidata and propagating mentions
throughout the article.

3.1. Existing Benchmarks

Within the Joint research Center (JRC) Text and
Data Mining Unit, we are facing the challenge of
detecting and linking named entities within a live
stream of retrieved news articles from more than 80
languages. Our main interest is to detect Persons,
Locations and Organisations, as well as temporal
information. The linguistic processing chain already
includes a NER and NEL dictionary and rule-based
system, setup and maintained for more than two
decades, and we are in the phase of renewing it
with more accurate systems based on Deep learn-
ing architectures and pre-trained language models.
The first step is to evaluate such state-of-the-art
models and the current system towards a bench-
mark tailored to our needs and constraints, as de-
fined above.

In the core named entities recognition task, the
WIKIANN dataset is the most used silver standard,
especially in multilingual settings (see XTREME
benchmark for example), but it does not correspond
to news style and its low quality is often highlighted.
Apart from the SlavNER dataset that enables to
evaluate slavic languages, all the other datasets
are more interesting for specific Named Entities or
difficult cases (e.g. MultiCoNER 1 and 2). As a
result, there is a strong need for developing a gold
standard for multilingual news genre.
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Figure 1: Named Entity Linking illustration (Wikipedia page)

3.2. Methodology to setup the
Multilingual News dataset

Dataset design

WiNNL’s annotation scheme prioritises three core
categories of entities: PER, ORG and LOC. These
categories refer to person names, organisations
and geographical locations, respectively. We opt
for a word-level annotation scheme, where a word
can be tagged as being the beginning of an entity,
inside of an entity mention or outside of any annota-
tion. This is indicated by Inside-Outside-Beginning
(IOB) tags, where the prefix I- or B- is attached to
the type (PER, ORG or LOC) of the entity for each
word (Ramshaw and Marcus, 1999).

Data collection process

The process of collecting and cleaning our multilin-
gual NER/L dataset is initiated by downloading the
HTML of articles from Wikinews. This source was
chosen due to its extensive cross-linguistic cover-
age and the rich network of interlinked entities it
contains. In Wikinews, authors of articles generally
tag each first occurrence of a named entity with
their respective Wikipedia page. These links are
denoted as <a> tags with the class extiw in HTML.
From the Wikipedia page we extract the unambigu-
ous QID of the entity, that uniquely identifies the

item in Wikidata across all languages.
The next step in the pipeline involves the clas-

sification of these entity QID’s. This is achieved
through a SPARQL query against a local instance
of the Wikidata dataset, based on the simplified
qEndpoint (Willerval et al., 2022). Entries classes
in Wikidata are organised as a graph, where each
instance belongs to one or more classes and each
class has one or more superclasses. The query
seeks to traverse the superclasses of a Wikidata
instance until one of several predetermined base
types is encountered, or until a defined depth limit is
reached. This mechanism allows us to categorise
and detect only entities of the types we are inter-
ested in.

Following the classification of entities, the system
then maps all aliases of the entity that are found on
Wikidata to the QID of the entity type. These aliases
serve as additional textual representations of the
entities and are crucial for detecting all possible
mentions. These steps of resolving the type of
entity based on a Wikipedia link are illustrated in
Figure 2.

The final stage of the data collection pipeline in-
volves propagating the entity links throughout the
article, using the knowledge base generated by the
Link resolver. This stage is illustrated with an ex-
ample in Figure 3. The system scans through all
n-grams of the article text and creates offset-based
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Figure 2: Example of how the link resolving pipeline builds or extends a mapping from aliases to entity
types, in this case based on a link to a First Lady of the United States. Once the unambiguous QID is
found, the resolver will iteratively go through the levels of parent entity classes until a parent is found that
is present in the base QID mapping. In this case Q5 (human) is found in the parent QIDs and so the
aliases of the lady are mapped to “PER”.

annotations for each combination of n-grams that
matches one of the recognised aliases. This pro-
cess aims to ensure that all potential mentions of
the entities are captured and annotated with the
correct type and QID.The combination of the arti-
cle content stripped of HTML tags and the list of
annotations is represented with the Article class.

Post-processing

To render the scraped data suitable for evaluation,
the articles must be segmented into sentences
and annotated with Inside-Outside-Beginning (IOB)
tags. Sentence termination is identified using the
multilingual spaCy sentence model (Honnibal and
Montani, 2017). To optimise the dataset’s size and
enhance its usability, consecutive newline charac-
ters are compacted into a single white-space.

Subsequently, all sentences devoid of any
named entity are eliminated. The remaining data
is validated through a multilingual language model,
specifically fine-tuned for Named Entity Recogni-
tion (NER). For this version of the dataset, we used
distilbert-base-multilingual-cased-ner-hrl (Adelani,
2024). This NER finetuned version of distilbert
has been trained on news data for several high
resource languages. If the system-generated tags
coincide with the model, the sentence is retained.

By contrast, sentences for which our system yields
fewer or different annotations than the model are
discarded. Formally, for every sentence x com-
prised of n tokens x1, ..., xn, we evaluate the anno-
tation (i.e., a named entity tag) yi produced by our
method for each token xi against the one predicted
by the auxiliary language model, ŷi. We retain
the sentence if at least one annotation yi ̸= O is
present, and every yi ̸= O possesses the same
annotation as the corresponding ŷi. This procedure
culminates in an enhanced precision of our annota-
tions, as they are validated through this ensemble
approach. These measures effectively reduce the
volume of the collected data to approximately 0.4
to 2% of the initial scraped content, the percentage
varying according to the language.

Each retained sentence is then tokenised, dur-
ing which every token’s annotation type and Wiki-
data ID (QID) are encoded in IOB format. The
final dataset comprises items with the following
attributes: the original sentence, the sentence to-
kens, IOB-NER tags for each token, IOB-QID tags,
the sentence language, and the complete URL of
the source article. The steps of this pipeline are
illustrated in Figure 4.
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Figure 3: Illustration of the mention detection algorithm of the automatic Annotator used in WINLL with a
window size of 4.

Figure 4: The post-processing pipeline used for
WINLL.

Human validation

In the final phase of data preparation, we instituted
a rigorous quality control process to ensure the ac-
curacy of our annotations. This process involved
manual verification of annotated sentences by na-
tive speakers corresponding to each language in
the study. These evaluators were selected from a
pool of international research trainees at the Euro-

pean Joint Research Centre, who volunteered to
help with the project. A locally hosted instance of
the INCEpTION annotation tool was employed for
this verification process (Klie et al., 2018). The eval-
uators were instructed to modify only those NER
tags that were inaccurately assigned and to delete
sentences with erroneous entity links entirely in
order to streamline the verification process.

4. Results and Evaluation of DL
models on the benchmark

In this section, we provide a comprehensive
overview of the Multilingual Wikinews NER/L
dataset, denoted as WiNNL v1. The current version
of the dataset encompasses 11 predominantly Eu-
ropean languages, namely Dutch, English, French,
German, Swedish, Spanish, Portuguese, Italian,
Greek, Polish, and Russian. Table 1 provides de-
tailed statistics on the number of unique articles
parsed, the count of sentences, tokens, and entities
pertaining to each language.

Subsequently, we juxtaposed the outcomes
of human validation against the original system-
generated annotations. For each language, preci-
sion, recall, and F1 scores were computed, utilis-
ing the validated tags as the ground-truth. We use
span-based metrics as opposed to token-based,
as for our downstream purpose it is more useful to
evaluate with metrics at a full named-entity level.
This project makes use of the SemEval 2013-9.1
based evaluation library “nervaluate” (Batista and
Upson, 2020). The results of this comparative anal-
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Language Articles Sentences Entities Tokens Med. length
German (de) 482 1000 1551 21222 119
English (en) 431 1000 1740 27037 126
Dutch (nl) 720 1500 2150 31584 112
Polish (pl) 1035 1606 2148 30615 101
Italian (it) 636 1155 1755 36669 150
Spanish (es) 319 615 1035 20503 160
Portuguese (pt) 342 539 695 14904 129
French (fr) 607 989 1661 34902 154
Russian (ru) 428 720 904 15371 104
Swedish (sv) 465 758 1024 139960 111
Greek (el) 348 520 716 13701 134

Table 1: Number of parsed articles, sentences, named entities, tokens and the median length in characters
for the data in each language.

ysis are depicted in Table 2.
Finally, we evaluated the performance of three

cutting-edge models on our dataset and compared
the outcomes against other prevalent multilingual
NER and NEL benchmarks. Our primary focus was
to discern the impact of limiting the scope solely
to sentences within the news domain on the per-
formance of widely-used models. The findings of
these named-entity level assessments are delin-
eated in Table 3.

5. Conclusion and Perspectives

Based on the evaluations presented in Section 4,
we conclude that the scraper pipeline has an av-
erage precision of .942, and an average recall of
.917.

Although the ensemble system correctly identi-
fies a significant portion of named entities, there
are instances where it may fail to detect some enti-
ties. This shows that there is still need for a human
correction step. For future iterations, we propose
the use of more rigorous checking mechanisms
by leveraging specific language models for each
language.

Analysis of the human validation points to the
system being most accurate for PER entities. A
noteworthy observation by the human validators
is the occasional tagging of common words that
do not typically refer to named entities. This oc-
curs in Wikinews articles when the context makes
it clear what the common name refers to. An exam-
ple is the term “the forest”, which could be linked
to the Amazon Rainforest. To address this issue,
we could implement stricter language model agree-
ment checking. However, it is important to note
that such a measure may also lead to a decrease
in recall, as it might fail to identify some legitimate
and linked named entities that the language model
does not detect.

Therefore, the challenge lies in striking a balance

between improving the precision of the NER system
and maintaining, or potentially enhancing, its recall.
This delicate balance will be our focus in the further
development and refinement of the system.

Another consideration is the language support
of Wikinews. Version 1 of WiNLL includes only
11 languages, with the main reason being the dif-
ficulty of scraping high quality tagged sentences
for the other languages. For example, in the Rus-
sian language almost none of the named entities
are tagged in articles. This increases the amount
of articles the scraper must download, and in turn
also the network overhead, to achieve a sufficiently
large dataset.

In future work, the scraping pipeline could be
adapted to work with other news sources, such
as Voxeurop or any open sourced news website.
This would involve the creation of a more elaborate
interface between arbitrary HTML page sources
and Wikidata objects. This will also imply to use a
language model to detect the mentions, than feed
the results to our pipeline and then validate the
projection and linking. This will enable to see the
added-value of the language model for entity men-
tion detection and entity linking. In that scenario,
another open questions arise and notably how to
add new recognized entities to the Wikidata reposi-
tory?

As a global conclusion, as has been shown here,
to build our benchmark, we combined human anno-
tation, Deep learning language models and Knowl-
edge bases. The main outcome here is a bench-
mark that can be considered a quasi-gold standard,
as it has been manually curated at the end of the
process. In turn, the dataset can then be used to
fine-tune a model for a specific genre (here news)
and specific languages and thus create a SOTA
model. As shown, the human validation is quite
light, as it consists mainly in validating or invalidat-
ing the data already recognized by the KB and/or
validated by the DL model.
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Language Prec. Rec. F1 LOC ORG PER
German (de) .986 .909 .947 .922 .929 .983
English (en) .956 .938 .947 .931 .951 .956
Dutch (nl) .936 .906 .921 .912 .869 .975
Italian (it) .986 .907 .945 .882 .945 .968
Spanish (es) .944 .944 .943 .884 .941 .975
Portuguese (pt) .965 .936 .950 .958 .927 .965
French (fr) .879 .870 .875 .813 .826 .944
Greek (el) .885 .925 .905 .935 .842 .989

Table 2: Comparison of the accuracy of the system generated tags for each language, based on the
human-validated samples. F1 scores for each specific tag are given on the right. All metrics calculated on
named-entity level. Mean F1=.927.

Dataset Model de en nl pl it es pt fr ru sv el
WikiANN XLM-Roberta .354 .373 .325 .272 .275 .273 .317 .345 .048 .223 .024

wikineural .715 .554 .716 .758 .696 .671 .628 .688 .361 .733 .661
distilbert .657 .521 .653 .694 .584 .589 .549 .542 .331 .715 .505

UNER XLM-Roberta .496 .497 - - - - .404 - .081 .418 -
wikineural .771 .808 - - - - .838 - .687 .839 -
distilbert .816 .809 - - - - .847 - .714 .865 -
WiNNL-model .762 .772 - - - - .804 - .670 .821 -

WiNNL XLM-Roberta .584 .561 .561 .297* .388 .449 .415 .409 .066* .543* .071
wikineural .835 .827 .843 .759* .753 .884 .875 .835 .785* .876* .724
distilbert .828 .810 .851 .756* .787 .878 .875 .839 .816* .883* .712

Table 3: Named-entity span level F1 scores of wikineural, distilbert-cased and XLM-Roberta on the
WikiANN, UNER and WiNNL NER benchmarks. Scores indicated with ⋆ are not validated by humans. We
also evaluated the UNER benchmark with a multilingual distilbert model finetuned on our human validated
WiNNL dataset (WiNNL-model).

In the next version of the benchmark-building
system, for the remaining languages, as we don’t
have enough human annotated data sources, we
will rely on a SOTA language model to first annotate
mentions and then the propagation of mentions
will be ensured by the KB mentions feature. That
will open other questions, the way around, on the
added-value of DL for updating KB.
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