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Abstract
Taxonomies can serve as a vital foundation for several downstream tasks such as information retrieval and question
answering, yet manual construction limits coverage and full potential. Automatic taxonomy induction, particularly
using deep Reinforcement Learning (RL), is underexplored in Natural Language Processing (NLP). To address this
gap, we present TaxoCritic, a novel approach that leverages deep multi-critic RL agents for taxonomy induction
while incorporating credit assignment mechanisms. Our system uniquely assesses different sub-actions within the
induction process, providing a granular analysis that aids in the precise attribution of credit and blame. We evaluate
the effectiveness of multi-critic algorithms in experiments regarding both accuracy and robustness performance in
edge identification. By providing a detailed comparison with state-of-the-art models and highlighting the strengths
and limitations of our method, we aim to contribute to the ongoing development of automatic taxonomy induction
while exploring the usage of deep RL techniques in this field.
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1. Introduction

A domain’s taxonomy categorizes concepts based
on "is-a" relationships (Brachman, 1983), forming
acyclic graphs. Nodes represent terms, and di-
rected edges signify relationships. In this context,
"P is-a Q" implies that term P (hyponym) is a sub-
class or more specific instance of term Q (hyper-
nym). Taxonomies provide a hierarchical organiza-
tion of concepts that enables more efficient data
categorization and retrieval. Recent advances aim
to automatically create faceted taxonomies to sup-
port more nuanced classifications and facilitate
easier search and navigation within linked data ap-
plications (Zong et al., 2017). Additionally, several
NLP methods utilize term taxonomies to support
knowledge-rich applications, such as information
extraction (Demeester et al., 2016) and question
answering (Harabagiu et al., 2003), demonstrat-
ing the importance of structured knowledge that is
embodied in taxonomies. Integrating taxonomies
into linked datasets can significantly enhance in-
teroperability and semantic depth, contributing to
improved understanding, reasoning, and perfor-
mance on complex NLP tasks.

Manual taxonomy construction is a resource-
intensive and time-consuming task that requires do-
main knowledge. There have been efforts to hand-
craft large taxonomies, such as WordNet (Miller,
1995), yet ensuring comprehensive coverage re-
mains a challenge. Automatically constructing a
high-quality taxonomy is non-trivial. The goal is to
infer a taxonomy graph from a set of background
resources. This involves two subtasks (Wang et al.,
2017): (a) Hierarchy detection: Identifying “is-a”

relations between terms. Various combinations of
candidate words are tested with the aid of a back-
ground corpus to uncover domain-specific relations.
(b) Hierarchy construction: Organizing extracted
pairs from (a) in a tree-like structure presents chal-
lenges, including representing transitive relations1,
and ensuring the taxonomy remains an acyclic
graph with a single root node, to which all other
nodes can trace a path.

The asymmetrical nature of the hypernym rela-
tion leads to two possibilities: (1) The parent node
(hypernym) exists, enabling the addition of its pair
as a child node (hyponym); (2) The child node is
already in the taxonomy, requiring the addition of
its parent, which is more complex due to the tax-
onomy’s graph structure. Since the taxonomy is a
tree with a single root, all nodes inherently have a
parent, making it non-trivial to add a new parent
node for an arbitrary child node. Consequently,
most methods allow the insertion of a child node
into an existing parent, and not the reverse.

Unlike conventional approaches, deep Reinforce-
ment Learning (RL) allows for simultaneous opti-
mization of both hierarchy detection and organiza-
tion tasks, minimizing error propagation (Mao et al.,
2018). Despite its potential, deep RL’s application
in taxonomy induction is limited (Mao et al., 2018;
Han et al., 2021). In taxonomy induction, an RL ac-
tion involves selecting a term (child node) from the
remaining set and adding it to another term (parent
node) in the taxonomy. Previous work unified these

1A transitive relation is defined as: if a “is-a” b and b
“is-a” c then also a “is-a” c. Entity ambiguity complicates
these relations in automated taxonomies (Liang et al.,
2017).
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actions (Mao et al., 2018; Han et al., 2021). We
posit that both components (chosen child and par-
ent nodes) must be correct for meaningful learning
of a single action. Actions, rather than nodes, are
deemed correct or incorrect as a whole. However,
in certain cases, one of the sub-actions2 might be
contextually accurate for the taxonomy being con-
structed. This leads us to the problem of credit
assignment which involves identifying the cause of
a certain outcome (Minsky, 1961). Proper credit
assignment is crucial for pinpointing the compo-
nent in the action that originates the error. Without
it, the model’s learning process and performance
can be hindered. In this paper, we delve into the
crucial aspect of credit assignment, and explore
how credit assignment along with multi-critic can
better attribute blame to specific sub-actions.

We introduce TaxoCritic, a novel deep RL
method for automatic taxonomy induction3. Our
goal is to enhance this task using multi-critic RL,
emphasizing improved credit assignment. Our con-
tributions are: 1) Introduce a novel RL formalization
that considers parent and child nodes of the action
in taxonomy induction simultaneously, in contrast
to prior methods. 2) Conduct a thorough exper-
imental evaluation of credit assignment in taxon-
omy induction. 3) Propose a multi-critic approach
to highlight the effectiveness of credit assignment
in taxonomy induction, leading to improved robust-
ness.

The paper is structured as follows. In Section 2
we present an overview of previous work upon
which we build. Section 3 describes our methodol-
ogy. Section 4 describes our dataset and presents
the results of our experiments. We draw our con-
clusions in Section 5, and discuss our limitations
in Section 6.

2. Related Work

Taxonomy induction methods can broadly be cate-
gorized into traditional approaches and RL-based
techniques. In this section, we briefly overview tra-
ditional approaches before focusing on advances
using RL. Traditional methods for hierarchical de-
tection are pattern-based (Hearst, 1992), offer-
ing high precision but low recall, or statistical, us-
ing background text statistics for identifying rela-
tions without manual syntax specification. For ex-
ample, Fu et al. (2014) uses the spatial proper-
ties of embeddings like GloVe (Pennington et al.,
2014) or Word2vec (Mikolov et al., 2013) to detect

2We refer to the choice of either one of the two terms
as a “sub-action”, while the complete action refers to the
choice of both the child and parent terms.

3Our implementation of TaxoCritic and the Ap-
pendix file are publicly available at https://github.com/
BendeguzToth/taxonomy-construction.

hypernym-hyponym pairs. For more information
on traditional methods, please refer to Page 49
of Weikum et al. (2021).

Limited research exists on RL in taxonomy in-
duction. Mao et al. (2018) argue that the two-
phase taxonomy-induction setup, i.e. hierarchy
detection and construction, is inherently subopti-
mal due to one-directional information flow. Their
system, TaxoRL, unifies both phases, training a
REINFORCE (Williams, 1992) agent to select and
append a child node to a pre-existing parent in
the taxonomy, which is also chosen by the agent.
DTaxa (Han et al., 2021) builds on TaxoRL with an
actor-critic approach, using a variant of the DDPG
agent instead of REINFORCE, for faster learn-
ing and better performance. TaxoRL and DTaxa
achieve competitive performance on taxonomy in-
duction benchmarks.

Both TaxoRL and DTaxa face a common draw-
back in their action representations. They treat the
selection of a term and its position in the taxonomy
as a single action, missing the ability to discern
different types of errors. For example, choosing a
child node without a parent in the tree could lead
to multiple incorrect parent choices. We argue that
adjusting action handling to better align with the
problem’s structure and semantics could enhance
taxonomy induction.

3. Methodology

We formulate taxonomy induction as an RL prob-
lem. The goal is to create a taxonomy that accu-
rately organizes a given set of terms, aligning with
the golden taxonomy. To achieve this, the model is
provided with a large background corpus, allowing
it to incorporate information about the relations of
words as features in its action representation.

3.1. Problem formulation

Taxonomy induction is formulated as a finite and
discrete Markov Decision Process (MDP) (Bellman,
1957). At the beginning of every episode, we start
with a taxonomy tree containing only a single word
(also known as a term). We expand the tree at
each time step by appending a word from the term
set as a child to one of the nodes in the tree until
all the terms are added (i.e. the end of an episode).
At each time step t, there is a set of words that are
nodes in the taxonomy tree Ut, a set of remaining
terms that are not yet part of the tree Vt and a set
of edges Et, each of which connects two nodes
in the taxonomy: Et ⊆ {(Ut × Ut)}. Furthermore,
a root node ROOTt ∈ Ut serves as the root of the
taxonomy tree. To give a concrete example of the
notion of a state, we refer to Figure 1. We follow
the standard definition in Sutton and Barto (2018)

https://github.com/BendeguzToth/taxonomy-construction
https://github.com/BendeguzToth/taxonomy-construction
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Figure 1: Example of an action at = (Apple Tree,
Plant), where roott = {Living}, Ut = {Living, Plant,
Animal, Carnivore, Herbivore}, Vt = {Tree, Rab-
bit, Apple Tree, Horse}, and Et = {(Plant, Living),
(Animal, Living), (Carnivore, Animal), (Herbivore,
Animal)}. After the execution of this action, roott+1

= {Living}, Ut+1 = {Living, Plant, Animal, Carni-
vore, Herbivore, Apple Tree}, Vt+1 = {Tree, Rab-
bit, Horse}, and Et+1 = {(Plant, Living), (Animal,
Living), (Carnivore, Animal), (Herbivore, Animal),
(Apple Tree, Plant)}.

and define the key elements as follows:
State The MDP contains a set of observed

states S. The state st ∈ S at any time step t
represents the taxonomy at time t, consisting of
a collection of edges Et, as well as the remaining
term set Vt. Notably, there is no need to explic-
itly include the terms that are already part of the
tree (the nodes) as they are implicitly represented
by the edges. The state is formally denoted as
st = (Et, Vt).

Action There is a set of actions A. An action at
(at ∈ A) can fall into one of two types:

• Adding a new node as a child In this case,
the action at takes the form (v, u) ∈ (Vt × Ut).
The new term v is added to the taxonomy as
a child node to u. The update to the taxonomy
at time step t+ 1 is as follows:

Ut+1 = Ut ∪ {v}, Vt+1 = Vt \ {v}
Et+1 = Et ∪ {(v, u)}, ROOTt+1 = ROOTt

• Adding a new node as root Alternatively, the
current root is the child, and a new term is
appended as its parent (resulting in the new
term becoming the new root). This action at is
represented as (ROOTt, v) where v ∈ Vt. The
common updates to set U and V at time step
t + 1 are the same as in the previous action.

The specific updates to E and ROOT are:

Et+1 = Et ∪ {(ROOTt, v)}, ROOTt+1 = v

By combining those two action possibilities, an
action takes the following form:

at ∈ (Vt × Ut) ∪ ({ROOTt} × Vt) (1)

Transition The transition from one state to an-
other is deterministic, i.e. Pr(st+1|st, at) = 1.
Thus, following the two action possibilities, the next
state is determined by the updated taxonomy:

st+1 = (Et+1, Vt+1)

Reward Similar to (Mao et al., 2018) and (Han
et al., 2021), we utilize the difference in Edge-F1 at
each time step as the deterministic reward signal.
Edge-F1 is defined in Equation 2, where E∗ is the
set of edges present in the golden taxonomy and
E is the set of edges predicted by the model. The
reward at time step t is then F t

1 − F t−1
1 .

P =
|E ∩ E∗|
|E|

, R =
|E ∩ E∗|
|E∗|

F1 =
2 · P ·R
P +R

(2)

3.2. Design Architecture

To address the issue of proper credit assignment in
previous methods, we propose TaxoCritic, a single-
actor and multi-critic RL algorithm that individu-
ally evaluates both sub-actions. This approach
allows for assigning rewards (either positive or neg-
ative) to the two sub-actions independently, leading
to better credit assignments. Inspired by existing
multi-critic RL techniques (Martinez-Piazuelo et al.,
2020; Mysore et al., 2021), we integrate the idea of
multiple critics into the domain of taxonomy induc-
tion for the first time. Instead of relying on a single
critic to estimate the value of an action, our algo-
rithm incorporates two distinct critics, each dedi-
cated to one of the sub-actions and their outputs
are combined to produce the final estimate. More
precisely, one of the critics assesses the choice
of the parent node, while the other evaluates the
choice of the child node. This design allows the
sub-critics to be independent and simplifies model
optimization by backpropagating only once from
the combined action value. The actor, on the other
hand, remains undivided and determines the best
joint action to take. An overview of the TaxoCiritc
framework is illustrated in Figure 2.

3.2.1. Actor

In our method, the actor is a fully connected 2-layer
feed-forward neural network. The design of the ac-
tor architecture poses a unique challenge due to
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Actor
2 layer fully connected

feed-forward

π(v, u)

Critic 1
2 layer fully connected

feed-forward

Critic 2
2 layer fully connected

feed-forward

Mixing layer
single layer fully connected

feed forward

q(v, u)

fa(v, u)
fc1(v, u) fc2(v, u)

Figure 2: An overview of the TaxoCritic method. fa,
fc1 and fc2 represent the feature representations
(vectors) of the inputs for the actor and two critics
respectively. The actor (a two-layer fully connected
feed-forward neural network) takes the encoding
of a state as the input and outputs the policy π.
Following this policy, the environment executes a
sampled action which contains two sub-actions. As
shown on the right side, the critic network features
two sub-critics and a mixing layer. Considering
the state and two sub-actions, one critic evaluates
the child’s choice, while the other evaluates the
parent’s choice. The mixing layer combines those
results from both critics and produces the action
value q.

the dynamic nature of our action space. Unlike
agents trained for tasks like playing Atari games or
controlling robotic arms, where the number of ac-
tions remains constant throughout the task (Mnih
et al., 2015; Franceschetti et al., 2021), taxonomy
induction demands a more flexible approach. As
described in Section 3.1, the actions are defined
by the number of terms left to be added to the tree,
as well as the current nodes that are present in
the taxonomy. These quantities are dynamic and
change at each time step, making it impractical to
adopt a standard architecture where the neural net-
work takes only the state representation as input
and outputs a probability distribution over a fixed
number of possible actions. Thus, in our method,
the policy network takes the features of a possible
state-action pair (st, at) as the input, generates the
probability of taking that specific action in the given
state (i.e. Pr(at|st)). This design allows accom-
modating an arbitrary number of actions. During
the construction of a taxonomy, all possible action
pairs at the current state are fed through the net-
work, outputting a probability distribution over the
valid action space through a Softmax function.

Moreover, a challenge arises from the variability
in action semantics across different episodes. For
instance, when constructing a taxonomy for the
animal kingdom, and subsequently another one for
different kinds of mining equipment, all the actions

would have entirely different semantic meanings,
despite the action space size remaining constant.
In other words, the action corresponding to the first
output value will probably have an entirely different
interpretation in taxonomy a than in taxonomy b.
Thus, it is crucial to explicitly encode the actions
themselves, as relying on constant positions is no
longer sufficient. By using a network that incorpo-
rates action embeddings, the semantic meaning
of each action can be communicated in the Taxo-
Critic.

3.2.2. Critic

In taxonomy induction, an action is expressed as
an edge (v, u) to be added to the taxonomy graph.
An action can be split naturally into two sub-actions.
One component of the action, v, denotes the new
term that shall be added to the taxonomy as a
child node, while u denotes the parent node to con-
nect the child node. This clear division between
the two parts of the action allows us to employ
distinct critics for assessing each sub-action inde-
pendently. Therefore, in our model, the critic is
divided into two distinct sub-critics. Each of the two
sub-critics can only observe a part of the feature
space (depending on which part of the action they
focus on) and, as such, are responsible for rating
different components of the action. The outcomes
of these sub-critics are then merged with a single
feed-forward layer neural network to obtain the final
q value estimate.

3.3. Feature Representation

In taxonomy induction, both states and actions are
tuples of words. To capture the semantic features
of the words, we use the embedding of state and
action as inputs of neural networks. We gener-
ate the feature representations as in TaxoRL (Mao
et al., 2018), adapted by DTaxa (Han et al., 2021).
A syntax-level feature vector is constructed for ev-
ery possible action, consisting of eight features:
Capitalization, Endswith, Contains, LCS, LD, Nor-
malized frequency difference, and Generality differ-
ence; see Appendix A for detailed information. The
final vector is the concatenation of the embeddings
for the vectors v and u corresponding to the action,
the dependency path, and the syntax-level feature
vector. Figure 3 depicts an overview of a feature
vector for action at = (v, u).

As previously outlined in Section 3.1, a state of
the MDP has the form st = (E, V ). However, incor-
porating the remaining term set V as part of the
state feature is redundant since the action encod-
ing already encapsulates this data. Therefore, we
simplify the state representation to only E. The
edges of a taxonomy at a given time t correspond
to the taken actions since each action effectively
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Figure 3: The action feature vector at = (v, u)
concatenates the word embeddings —using GloVe
(Pennington et al., 2014)— for terms v and u, their
dependency path from the corpus, and syntactic
features into one vector.

adds a new edge to the tree. The state st is rep-
resented as the sequence of actions taken up to
t:

st = (a1, at, ..., at−1) (3)

To represent this, all action embeddings
(a1, a2, ..., at−1) are input to a single-layer Long
short-term memory (LSTM) network that combines
those values into one vector. As the model is fully
differentiable, backpropagation into the LSTM pa-
rameters is straightforward.

For all the possible actions at time step t, the
actor takes the feature representations of each
pair of state and action and concatenates them as
one feature vector input. On the other side, both
sub-critics utilize different feature vectors based
on the state and action representations. These two
vectors are similar, essentially mirroring each other.
The rationale behind this design is to ensure that
when evaluating one sub-action, no assumptions
are to be made about the other part of the action.
This leads to two changes in feature representation
compared to the one employed by the actor:

Word embeddings: Each sub-critic includes the
word vector for only the term it evaluates. Specifi-
cally, one sub-critic uses the embedding of v, and
the other uses the embedding of u.

Relational features: The dependency path and
syntax level features can no longer be used, as
they rely on knowing both words of the action. In-
stead of leaving those features out, they are modi-
fied in a way that requires knowledge of only one
term. This is achieved by summarizing the rela-
tions between the known word and all its potential
pairs. For example, if the chosen action by the
policy network is the tuple (vi, uj), then the critic
responsible for the choice of the child node would
take the relations of vi with every possible u and
average them to obtain an approximation. This av-
eraged feature is called the average shared feature
of critic 1. The average shared feature of critic 2
is constructed in a similar way, except the choice
of uj is known, and the average is taken over all
possible choices of v. A comprehensive formal
definition of the shared features for the sub-critics
is provided in Appendix B.

3.4. Training

The training of our model is done simultaneously
by training the two sub-critic networks and the pol-
icy network. Both critics are trained jointly, with the
gradient being distributed by the mixing function4.
The loss is computed using the output of the mix-
ing function, which aggregates the output values
of both sub-critics. We refer to the entire value
network (both sub-critics and the mixing layer) as
combined critic. A comprehensive outline of the
joint training algorithm is in Appendix C. All the
experiments were run on a Linux virtual machine
powered by an Intel Xeon Platinum CPU with 2
cores and 32 GB RAM. With this setup, running a
single epoch took 50-60 minutes on average. Run-
ning the full experiment up to 300 epochs took over
11 days.

4. Experimental Results

To evaluate our model’s performance and compare
it with previous methods, we conducted a series of
experiments. Our goal is to gain insights into the
characteristics, strengths, and weaknesses of the
algorithms by not only examining the final perfor-
mance metrics but also by conducting qualitative
analyses of the resulting taxonomies. We con-
ducted three analyses:

1. Ablation analysis. We conducted an ablation
analysis to evaluate specific features in our
model, focusing on their individual contribu-
tions to overall performance.

2. Performance assessment. In this experi-
ment, we evaluated the performance of our
final model, as well as two of the baseline
models —TaxoRL and DTaxa—, on a set of
taxonomy induction tasks. We compared their
results based on two evaluation metrics, ex-
amining the accuracy (i.e. edge F1 score) in
individual runs as well as the robustness (i.e.
consistency score) across different runs.

3. Credit assignment analysis. One of the moti-
vations for choosing a multi-critic approach for
our model was to improve credit assignment in
the critic. In this qualitative analysis, we show-
case how our critics have effectively learned
the behavior patterns we outlined above.

4.1. Experimental Setup

Experimental Environment In our experiments,
the dataset was split into training, validation, and

4Multiple constructions of the mixing layer have been
experimented with e.g. QMIX-like architecture (Rashid
et al., 2020). Here we only present the selected archi-
tecture with superior performance.
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test sets with a distribution of 70/15/15, correspond-
ing to 533/114/114 taxonomies respectively. Each
model was trained for 300 epochs, and the result-
ing weights were saved for subsequent qualita-
tive analysis. During an epoch, a single training
episode is executed for every taxonomy in the train-
ing set, amounting to 533 episodes per epoch. An
episode involves constructing a single taxonomy.
At the start of each episode, a set of terms is pro-
vided, and the goal is to build up a taxonomy from
said terms that match the target golden taxonomy
as closely as possible. The agent’s action interface
only allows for the extension of an already exist-
ing taxonomy, requiring at least one node (root) to
begin construction. To address this, like TaxoRL,
we chose to start each episode with a randomly
selected root node. The agent can then attach a
new root node on top of it by selecting the node
to be added as a parent and the current node as
a child. This approach is intended to improve the
model’s robustness by reducing the potential for
overfitting to a specific construction sequence for
each taxonomy as it aims to allow the model to
adapt to various starting points. All results are
averaged over multiple turns.
Hyperparameters We explored various layer sizes
and learning rates for both the actor and the critic
networks. A similar trend was observed in the
results, we therefore selected the optimal ones for
the following results. Both the critic networks and
the actor network consist of a single-neuron two-
layer and a multi-neuron first layer (with 64 and
60 hidden nodes respectively). We set a learning
rate of 5× 10−4 for the actor and 1× 10−4 for the
critic. Moreover, we employed a ReLU activation
function and the Adam optimizer (Kingma and Ba,
2014) for training. The discount factor is set to 0.95.
For more information about parameter optimization,
please refer to Appendix D.

4.2. Dataset

We used the WordNet taxonomy (Bansal et al.,
2014), also utilized by TaxoRL and DTaxa. It en-
compasses a set of 761 taxonomies sampled from
WordNet (Miller, 1995), each with a depth of three,
built up from 10-50 nodes. While this dataset
provides word sets and their corresponding tar-
get taxonomies, it does not specify the underlying
background corpus. The agent’s performance on
the benchmark is heavily influenced by this back-
ground corpus, which is essential for extracting
statistical relations among terms forming a crucial
aspect of the feature representation during train-
ing. To ensure meaningful comparisons with prior
methodologies, we opted to utilize the same back-
ground text as TaxoRL, which is an aggregation
of Wikipedia dump, the UMBC web-based corpus
(Han et al., 2013) and the One Billion Language

Modelling Benchmark (Chelba et al., 2013).

4.3. Evaluation Metrics

Edge-F1 score: Similar to Mao et al. (2018), we
first evaluate the Edge-F1 score. At the end of the
episode, once all terms are incorporated into the
taxonomy tree, the final construction is evaluated
against the gold taxonomy. A detailed explanation
of the edge score follows:

• Edge set in the constructed taxonomy: Epred

• Edge set in the gold taxonomy: Egold

• Edge precision: Pe = |Epred ∩ Egold|/|Epred|

• Edge recall: Re = |Epred ∩ Egold|/|Egold|

• Edge-F1: F1e = 2 · Pe ·Re/(Pe +Re)

Consistency scores: To assess the model’s ro-
bustness we introduce a consistency score, de-
noted as Croot, which measures the model’s ability
to converge consistently across different runs. It is
calculated as a ratio of the number of consistent
convergences where the model consistently identi-
fied the correct root Rconsistent to the total number
of experimental runs Rtotal.

Croot =
Rconsistent

Rtotal
(4)

In addition, we also introduce a ‘Consistency in
Edge Score’ Cedge, as the ratio of the number of
correct edges identified across all runs to the total
number of edges in the experiment Etotal.

Cedge =

∑totalRun
i=1 |Epredi ∩ Egold|

Etotal
(5)

4.4. Results

Experiment #1 Ablation Analysis In this experi-
ment we assess the impact of two features: sibling
embeddings and history inclusion. Sibling nodes
m and n share the same parent node, and their
embeddings are averaged and added to the fea-
ture vector of action (v, u) if sibling embeddings
are employed. The history feature encompasses a
summary of past actions in the feature vector.

Surprisingly, omitting the history representation
led to enhanced performance. We observed a
consistent pattern when testing using TaxoRL al-
gorithm. Making use of sibling embeddings, on
the other hand, positively impacts the performance.
Based on this analysis, we decided to leave out
the history representation from both our model and



20

TaxoRL for the main experiment 5. The results of
this analysis can be seen in Table 1.

History
Usage

Sibling
Usage

F1 after
150 epochs

F1 after
200 epochs

No No 0.3233 0.3328
No Yes 0.3301 0.3434
Yes No 0.1649 0.1724
Yes Yes 0.2506 0.2596

Table 1: The result table showcases the Edge-F1
score of TaxoCritic model when certain features
are omitted.

Experiment #2 Accuracy Performance We
trained our model, TaxoRL, and DTaxa* 6 on the
dataset described in Section 4.2. We average the
results of each algorithm over three runs. The
training results are illustrated in Figure 4. Despite
its initial slow start, our method eventually outper-
forms TaxoRL in the experiment. The slower con-
vergence at the beginning shows a characteris-
tic difference between the two algorithms.TaxoRL
trains its policy network based on sampled returns
at each transition, yielding a noisy but unbiased
return estimate. In contrast, our agent updates
its policy network using the critic’s output, which
begins as random due to the critic’s initial random
initialization. However, once the critic’s estimates
stabilize, our policy’s convergence accelerates and
surpasses TaxoRL’s speed. The graph further illus-
trates that DTaxa* significantly outperforms both
other methods. A potential reason for DTaxa*’s
better performance is attributed to the use of an ef-
ficient actor-critic algorithm DDPG. Table 2 shows
the results of all methods after a specific number
of epochs. For additional evaluation results, see
Appendix E.

Experiment #3 Robustness Performance We
assess our model’s consistent convergence across
various runs on a randomly selected taxonomy
sample. We conducted five runs with five differ-
ent initial root words. In TaxoCritic, the correct
root was correctly identified in 3 out of 5 cases.
In the remaining two instances, other terms were
chosen as roots. Among the 55 total edges from

5Note that this analysis was run with an earlier version
of the model before it was fully optimized, therefore the
results are slightly lower than in the final experiment.

6In our effort to access the code associated with the
DTaxa paper, we made attempts to contact the authors,
but unfortunately, we did not receive a response. To
conduct our experiments, we undertook the task of recre-
ating their model to the best of our abilities, based on
the limited information provided in the paper. We refer
to this recreated model as DTaxa*. The code of DTaxa*
is also provided in our project repository.

0 100 200 300
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Number of epochs
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TaxoCritic (ours)
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DTaxa*

Figure 4: The training performance comparison
graph of TaxoCritic (ours), TaxoRL, and DTaxa.
The central darker line represents the average per-
formance, while the lighter lines above and below
indicate the range of minimum and maximum val-
ues across the runs.

Model Epochs
100 200 300

TaxoRL 0.386 0.413 0.443
DTaxa* 0.571 0.643 0.664
TaxoCritic 0.349 0.421 0.459

Table 2: Edge-F1 scores on the training set perfor-
mance of the algorithms at different epochs.

the 5 runs, 31 were correctly identified. Among
the incorrect edges, a pattern emerged: 11 out of
the 24 erroneous edges had guestroom as their
parent, indicating a systematic bias in the model.
This bias is more manageable for practical use,
as domain experts can focus on potentially flawed
parts of the final taxonomy. This is especially ben-
eficial for larger and more intricate trees. While we
demonstrate this with a smaller example for clarity,
similar principles can apply to more complex do-
mains. The selected taxonomy sample and all the
resulting structures are depicted in Appendix F.

We repeated the experiment using the same tax-
onomy with the two benchmark models. DTaxa*
displayed a similar overall correctness, with 29 cor-
rect edges. However, it consistently struggled to
identify the correct root node across all 5 runs, ex-
hibiting a bias towards the term connecting room,
frequently assigning it numerous children despite it
being a leaf node in the golden taxonomy, resulting
in 11 incorrect edges featuring it as their parent.
TaxoRL achieved the lowest overall performance
by correctly identifying 26 edges. However, it con-
sistently identified the correct root in all 5 cases.
The results are summarized in Table 3. Refer to
Appendix F for the generated trees by DTaxa* and
TaxoRL.
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Model Croot Cedge
TaxoRL 1 0.47
DTaxa* 0 0.53

TaxoCritic 0.6 0.56

Table 3: Robustness Scores for the three Models.

Experiment #4 Credit Assignment The multi-
critic architecture was adopted to enhance conver-
gence speed and effective credit assignment by the
critic. This concept was demonstrated through a
hypothetical scenario where one sub-action could
be held responsible for an incorrect action (p, c)
while the other sub-action could be a suitable
choice. We examined our model’s feasibility to
exhibit this attribute by analyzing the construction
of a small example taxonomy.

Figure 5 depicts the state of the tree at the spe-
cific point of interest. In this analysis, we will look
at the sub-critic output values for potential actions
within the partial taxonomy. With V = {nursery,
day nursery, connecting room, adjoining room}, al-
lowable actions are: Each term within V can serve
as a child node, either linked to an existing taxon-
omy node (denoted in yellow and blue), or any term
from V can function as a new node, becoming the
parent of the current root node bedroom.

bedroom

motel room

child’s room

boudoir

guestroom

master bedroom dormitory

hotel room

nursery

day nursery

connecting room adjoining room

Figure 5: A simple partially constructed bedroom
hierarchy. Yellow and Blue nodes (top three rows)
denote correctly placed terms. Green and Red
nodes (bottom two rows) are yet to be placed, while
indicating their intended positions.

To analyze our approach’s ability to learn credit
assignment for sub-actions, we assess intermedi-
ate output values from two critics. To demonstrate
the credit assignment of an individual sub-action,
we focus on the average output of the child critic,
responsible for estimating the value of selecting
each potential node v in V as the child node.

In this example, selecting any of the blue terms
as a child node is beneficial due to the presence of
correct parent nodes for each of them in the tree.
However, the red node day nursery lacks a suitable
parent. We intuitively expect that the sub-critic for
choosing the child node should assign lower val-
ues to actions involving day nursery compared to
others. We therefore investigate the intermediate

values assigned by the term-choice critic for each
possible action. There are 8 potential parents for
each child candidate term. Table 4 displays the
average action values for every possible child can-
didate. Notably, day nursery has the lowest value
of -5.14, while the average for green terms (with
valid parents) is -4.32. This observation indicates
that our critic prioritizes the green nodes as poten-
tial children, aligning with expectations. Meanwhile,
since day nursery cannot be properly attached to
any existing nodes, the critic assigns it a lower
rating. For a similar analysis of the parent node
selection, please refer to Appendix G, where we
observe a similar trend.

This analysis demonstrates that our multi-critic
algorithm is correctly assigning the blame when
one sub-action is primarily responsible for the
choice of incorrect action, without penalizing sub-
actions that are conceptually correct but fail due
to the wrong choice of the other sub-action. This
property contributes to maintaining consistent ac-
tion value estimates during training.

Terms Action value
nursery -3.72
connecting room -4.76
adjoining room -4.47
day nursery -5.14

Table 4: Inverted action values show the critic’s
rating of each node’s suitability as a child.

5. Conclusion

In this paper, we introduce TaxoCritic, a deep Rein-
forcement Learning-based approach for taxonomy
induction that utilizes a multi-critic algorithm. Unlike
previous methods treating all actions as indepen-
dent, TaxoCritic divides actions into two distinct
sub-parts, each assigned to its own critic. This
framework enhances credit assignment by accu-
rately attributing blame to the responsible action
component in case of errors. While our approach
did not surpass all baselines in learning perfor-
mance, the enhanced credit assignment analysis
and overall robustness performance highlight the
potential of multi-critic strategies for taxonomy in-
duction. In conclusion, we believe that our method
can serve as a good foundation for further research
on applying deep RL techniques to taxonomy in-
duction in a promising direction. Further, we en-
courage the research community to explore inte-
grating taxonomy induction methods into the linked
data ecosystem to improve knowledge represen-
tation. This effort should ensure that the resulting
structures are interoperable, semantically rich, and
could be easily integrated into existing datasets.



22

6. Limitations

We anticipated that the critics in our methodology
would easily adapt to their more constrained role
and would be able to work together efficiently, and
our credit assignment analysis confirmed this ex-
pectation as the critics effectively identified correct
and incorrect sub-actions, a promising outcome.
However, this success did not translate proportion-
ally to overall performance. Despite outperforming
TaxoRL, our model’s performance was notably in-
ferior to DTaxa*, a single-critic method. This is
an unexpected outcome considering that both sub-
critics performed as intended. Trying to pinpoint
the reasons behind this performance deficit might
be an interesting follow-up research. We also pro-
pose exploring the impact of employing an alter-
native mixing function to effectively merge insights
from the sub-critics for the final value. In addi-
tion, although we follow the existing works to use
the WordNet taxonomy for evaluation which has a
depth limited to three, exploring our method’s gen-
eralizability on datasets with varied depth levels
would be an intriguing direction.

Ethics Statement

Our data are taken from publicly available sources.
For this reason, we do not expect that there are
ethical issues or conflicts of interest in our work.
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A. Actors’s Features

In Table 5, we list a detailed description of the features utilized by the Actor.

Table 5: Features and Descriptions

Features Description

Capitalization Whether any (or both) of the words are capitalized.
Endswith If the second word ends with the first word (for example, for the

pair (bear, polar bear), this would fire.)
Contains If the second word contains the first word.
Suffix match The number of matching trailing letters.
LCS The length of the longest continuous substring contained by

both words.
LD Length difference between the words. 10 ∗ |w1|−|w2|

|w1|+|w2|
Normalized frequency difference The ratio between the frequency of pair (v, u) and the most

frequent parent of v, u′: freq(v,u)
maxu′ freq(v,u′) .

Generality difference The generality g(v) of term v is the logarithm of the number of
its distinct hyponyms. The generality difference of the pair (v, u)
is defined as g(u)− g(v).

B. Sub-critics’ Features

In this appendix section, Figures 6 and 7 illustrates how the features outlined in Equation 6 are used by
the two sub-critics. The shared features for the sub-critics as mentioned in Section 3.2.2 are defined as:

f(v, u) : dependency path and syntax features of the term pair (v, u)
fc1(v) : The average shared feature of critic 1, where the child is v.
The mean is taken of all feature vectors with v as child.
fc2(u) : The average shared feature of critic 2, where the parent is u.
The mean is taken of all feature vectors with u as parent.

fc1(v) =

∑
u∈U f(v, u)

|U |

fc2(u) =

∑
v∈V f(v, u)

|V |

(6)

Critic 1

Vb Vb

Vb

Vb

U1

U2

Um

Average shared
features

U1

U2

Um

Action Chosen: UaVb

Average

Figure 6: Shared feature summary of sub-critic 1. This sub-critic is only aware of the choice of the child
term. To obtain the dependency path and syntax level features, it takes the features with all possible
parent terms, then averages them.
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UaV1

V2

Vn

V1

V2

Vn

Ua

Ua

Ua

Critic 2

Average shared
features

Action Chosen: UaVb

Average

Figure 7: Shared feature summary of sub-critic 2. This sub-critic is only aware of the choice of the parent
term. To obtain the dependency path and syntax level features, it takes the features with all possible child
terms, then averages them.

B.1. Network architecture

The value network is built up of three distinct parts. This is illustrated in Figure 8. There is one network for
both critics. Those share the same architecture, with two fully connected layers and a ReLU in between.
The input vector contains a word embedding (the embedding of v in the case of critic1 and the embedding
of u in the case of critic2), the appropriate average shared features, and the state representation. The
input size is 140. The first fully connected layer consists of 64 neurons, while the second layer is just a
single neuron. The output is interpreted as the value of the sub-action. The last part of the critic is the
mixing layer. It is a simple, single-layer feed-forward neural network that takes the two sub-action values
and combines them into the final action value. We experimented with different mixing functions, most
notably a QMIX-like architecture (Rashid et al., 2020), but we found a simple fully-connected layer to be
more performant.

Fully connected
60 units

ReLU

Fully connected
1 unit

Fully connected
60 units

ReLU

Fully connected
1 unit

Embedding v Embedding uState
embedding

Average shared
features child

State
embedding

Average shared
features parent

q(a1) q(a2)

Fully connected
2 units

q(v, u)

Critic1 Critic2

Mixing layer

Figure 8: The architecture of the critic. q(v, u) is the action-value of the action (v, u), and q(ai) is the
value of sub-action i.

C. TaxoCritic Training Algorithm

Algorithm 1 describes the joint training process of the agent in detail. The two critics are trained jointly,
with the gradient being distributed by the mixing function. The loss is calculated based on the output of
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the mixing function, that combines the output values of both sub-critics. In the pseudo-code below we
refer to the entire value network (both sub-critics and the mixing layer) as combined critic.

DEFINITIONS;
D : Training dataset;
αc, αa : Critic and actor learning rate;
γ : Rewards discount rate;
τ : Target update rate;
µ : Actor parameters;
θ, θ′ : Combined critic and combined critic target parameters;
π, q : Policy and value functions;
s, r : State and reward representations;
buff: Replay buffer;
INITIALIZATION;
buff← ∅;
Initialize θ, µ randomly;
θ′ ← θ;
for (V,U,E) ∈ D; // For each taxonomy in the training set.
do

while |V | > 0; // Repeat until the remaining term set is empty
do

A = (V × U) ∪ ({ROOT} × V ); // ’A’ is the set of all actions.
LP ← {πµ(s, a) for all a ∈ A}; // ’LP’ is the vector of log probabilities of all
actions.

(v, u)← sample(Softmax(LP)); // Sample action
V ← V \ {v}; // Update the taxonomy with the selected action
U ← U ∪ {v};
E ← E ∪ {(v, u)};
buff.add(s, (v, u), r, s′); // Add (state, action, reward, next state) to buffer

end
; // After the episode ends train on all transitions.
for (s, a, r, s′) ∈ buff; // For each transition in buffer
do

target = r + γqθ′(s′, a); // Calculate the critic target
Lc = (target− qθ(s, a))

2; // Combined critic loss
La = ln(πµ(s, a)) · qθ(s, a); // Actor loss
θ ← θ + αc ∗ ∇θLc; // Updating the parameters
µ← µ+ αa ∗ ∇µLa;

end
θ′ ← τ · θ + (1− τ) · θ′; // Updating target params
buff← ∅;

end
Algorithm 1: Joint training of the actor and the combined critic

D. Hyperparameters

D.1. Learning Rate

Specifically, we conducted experiments to determine the optimal learning rate pairs for both the actor and
critic networks. The outcomes of this analysis are detailed in Table 6.

D.2. Path LSTM Dimensions

The path LSTM is an important part of the model, as it is responsible for summarizing the information about
the relation of two words into a fixed-size representation.The dimension of this LSTM layer significantly
affects the final performance. To determine the optimal dimensionality, we conducted an experiment, and
the results are presented in Table 7.
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Learning Rate Edge-F1
Actor Critic (150 epochs)

1× 10−4 1× 10−4 0.2816
5× 10−4 1× 10−4 0.3301
1× 10−3 1× 10−4 0.2041

Table 6: Results of learning rate analysis for the TaxoCritic model

Path LSTM
Dimension

Edge-F1
at 150 epochs

Edge-F1
at 200 epochs

60 0.3301 0.3434
128 0.3353 0.3354
256 0.3208 0.3303

Table 7: Performance analysis of the TaxoCritic model with different path LSTM dimensions.

E. Additional Experimental Results

Results on the evaluation set are reported in Table 8, while the edge training results are reported in
Table 9.

Model Epochs
100 150 200 250 300

TaxoRL 0.063 0.066 0.069 0.068 0.065
DTaxa* 0.065 0.063 0.067 0.068 0.053
TaxoCritic 0.063 0.062 0.062 0.067 0.058

Table 8: The Edge-F1 score on the evaluation set performance of the of all three models, TaxoRL, DTaxa*,
and TaxoCritic after given number of epochs.

F. Robustness Results

F.1. TaxoCritic Robustness

Figure 9 illustrates the example taxonomy. While Figure 10 shows the tree generated by TaxoCritic to
evaluate the robustness.

bedroom

motel room

child’s room

boudoir

guestroom

master bedroom dormitory

hotel room

nursery

day nursery

connecting room adjoining room

Figure 9: The example taxonomy.
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Model Edge
Precision

Edge
Recall

Edge
F1

TaxoRL 0.23 0.427 0.299
DTaxa* 0.55 0.662 0.601

TaxoCritic 0.321 0.443 0.372

Table 9: Final precision, recall, and F1 scores after training of all three models, TaxoRL, DTaxa*, and
TaxoCritic.
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Figure 10: Trees generated by our model to evaluate TaxoCritic’s robustness. Red arrows indicate
incorrect edges, while black edges represent correct ones.

F.2. DTaxa* Robustness

Figure 11 shows the taxonomy trees generated by DTaxa* during the robustness analysis. Only three
different trees were generated, two of the trees occurring twice each.
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Figure 11: The trees generated by DTaxa* in five attempts, with two trees produced twice. Incorrect
edges are indicated by red arrows, while the black edges represent correct identifications.

F.3. TaxoRL Robustness

Figure 12 shows the taxonomy trees generated by TaxoRL during the robustness analysis. Only three
different trees were generated, with the first one occurring three times.

G. Credit Assignment Analysis

Referring to Figure 5, we notice that only selecting one of the blue nodes (child’s room, hotel room) as
parents leads to a correct action, as none of the yellow terms can be a parent to any of the potential
children. Thus, we anticipate the blue terms to have a higher action values than the yellow ones. Table
10 displays the values of the parent candidates. The average value of the incorrect parent candidates
(yellow) is -6.92, while the average value of the correct parent choices (blue) is -4.04. Once again, we
observe the same phenomenon as earlier: the sub-critic effectively prioritizes choices that are meaningful
independently, even without specific information about the other component of the action (i.e., the choice
of child in this case).

bedroom boudoir motel room guestroom
Action value -5.76 -4.87 -5.87 -5.24

master bedroom dormetry child’s room hotel room
Action value -9.00 -10.76 -4.71 -3.37

Table 10: This table shows the inverse actions values of choosing each of the nodes as the parent
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Figure 12: The trees generated by TaxoRL in five attempts, with the first tree occurring three times.
Incorrect edges are highlighted by red arrows, while the black edges indicate correct identifications.
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