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Abstract
Graph Neural Networks (GNNs) have been applied successfully to various NLP tasks, particularly Relation Extrac-
tion (RE). Even though most of these approaches rely on the syntactic dependency tree of a sentence to derive a graph
representation, the impact of this choice compared to other possible graph representations has not been evaluated.
We examine the effect of representing text though a graph of different graph representations for GNNs that are applied
to RE, considering, e. g., a fully connected graph of tokens, of semantic role structures, and combinations thereof. We
further examine the impact of background knowledge injection from Knowledge Graphs (KGs) into the graph represen-
tation to achieve enhanced graph representations. Our results show that combining multiple graph representations
can improve the model’s predictions. Moreover, the integration of background knowledge positively impacts scores, as
enhancing the text graphs with Wikidata features or WordNet features can lead to an improvement of close to 0.1 in F1.
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1. Introduction

The task of Relation Extraction (RE) consists of
predicting the relation between two entities men-
tioned in a text. It represents an essential subtask
for Information Extraction from text, and the result
is used in several downstream tasks such as Ques-
tion Answering (Yu et al., 2017; Xu et al., 2016) or
Knowledge Base Population (Nguyen et al., 2018).
Recently, approaches based on LSTMs (Hochreiter
and Schmidhuber, 1997) and Transformers such as
BERT (Devlin et al., 2019) have achieved state-of-
the-art performance on RE by exploiting contextual
information contained in the text around the enti-
ties (Wang and Yang, 2020; Baldini Soares et al.,
2019; Wu and He, 2019).

A separate line of works makes use of Graph
Neural Networks (GNNs), using neural network-
based techniques to process graph-structured in-
puts. GNNs have been applied to RE, typically rely-
ing on the syntactic dependency tree of a sentence
as graph representation. It has been argued that
relying on a syntactic dependency tree i) facilitates
dealing with long-distance phenomena (Tian et al.,
2021; Miwa and Bansal, 2016), and ii) increases
the robustness and generalizability of models (Xu
et al., 2015; Marcheggiani and Titov, 2017).

So far, most GNN approaches relied on the syn-
tactic dependency tree of a sentence as a graph,
and the impact of different graph representations
has not been systematically evaluated. To address
this gap, in this work, the impact of different graph
representations, as well as combinations thereof,
are investigated on three separate datasets.

Most RE approaches do not take into account

background knowledge, e. g., from Knowledge
Graphs (KGs). GNN-based approaches for RE
generally emphasize on the graph representation
of sentences (e.g., syntactic trees), and do not use
the entity information and the graph context con-
tained in external KGs. However, KGs may provide
valuable knowledge about the entities for the RE
task (Sun et al., 2020). Moreover, if we train a
model such that it can make use of background
knowledge, then, under some circumstances, this
enables to improve the performance of a model
without full retraining. For example, if a fact is miss-
ing that a model could use to correctly classify a
relation, or if a wrong fact leads to a model incor-
rectly classifying a relation, than adding or replac-
ing that fact can lead to the model making better
predictions.

Therefore, in addition to different graph repre-
sentations of the sentence, we also investigate en-
hanced graph representations by injection of KG
facts into these graph representations by adding
nodes and edges form the KG.

We show that combining multiple graph repre-
sentations can outperform the models that only use
the regular syntactic dependencies. Furthermore,
we show that incorporating information from KGs
like Wikidata (Vrandečić and Krötzsch, 2014) or
WordNet (Fellbaum, 1998) improves results signifi-
cantly.

2. Related Work

The integration of structured information, such as
syntactic dependencies (Tian et al., 2021), seman-
tic dependencies (Chan and Roth, 2011), and back-
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ground knowledge (Zhang et al., 2021; Peters et al.,
2019; Tokuhisa et al., 2022; Wang and Pan, 2020;
Sun et al., 2020; Wang and Pan, 2020), is an im-
portant topic in NLP.

Recently, much attention has been paid to the
incorporation of KG information in language mod-
els (Yasunaga et al., 2022; Peters et al., 2019;
Tokuhisa et al., 2022). For example, Yasunaga
et al. (2022) use a joint language-knowledge foun-
dation model in order to allow the NLP component
to incorporate facts from the KG.

While this integration can be implemented as
a training task (Yasunaga et al., 2022; Tokuhisa
et al., 2022) or by finetuning and adapting pre-
trained linguistic models (Houlsby et al., 2019;
Wang et al., 2020), this usually requires complex
architectures and comes with increased computa-
tional costs (Hamilton et al., 2022).

Another option is to directly operate on the sym-
bolic graph structure by encoding the information in
a graph and then processing it with Graph Neural
Networks (GNNs) (Zhang et al., 2018a). GNNs al-
low to directly learn over graph structure (Dai et al.,
2016; Gori et al., 2005; Li et al., 2016; Scarselli
et al., 2009; Hamilton et al., 2017) and can be easily
combined with standard neural network layers (Def-
ferrard et al., 2016; Gong and Cheng, 2019).

One of the first GNN approaches was proposed
by Kipf and Welling (2016), namely a Graph Con-
volutional Network (GCN), followed by the exten-
sion Relational Graph Convolutional Network (R-
GCN) (Schlichtkrull et al., 2018), that takes into
account edge types. Furthermore, the Relational
Graph Attention Network (R-GAT) (Busbridge et al.,
2019) adds an attention mechanism to the R-GCN
model. GNNs have been applied to a variety of
tasks, such as Link Prediction (Schlichtkrull et al.,
2018), Neural Machine Translation (Bastings et al.,
2017; Marcheggiani et al., 2018), and Semantic
Role Labeling (Marcheggiani and Titov, 2017).

Zhang et al. (2018a) have been one of the first
to apply GNNs to RE. Their model applies a GNN
encoder over syntactic dependency paths with un-
labeled edges, and achieves comparable results
to approaches based on bidirectional LSTMs and
LLMs. Guo et al. (2019) and Tian et al. (2021) ex-
tended the use of GNNs for RE by applying a GNN
with an attention mechanism and the capacity to
encode labeled edges. Nadgeri et al. (2021), in-
stead, explores the integration of external textual
information (e. g., from Wikidata) into a GNN model
for RE.

Recently, Yu et al. (2022) have shown linguistic
knowledge fusion for downstream tasks by compar-
ing different kinds of graph structures for several
tasks in the GLUE benchmark. They investigate
syntactic dependencies, semantic dependencies,
binary balance trees, and linear chains of tokens.

The work by Yu et al. (2022) does not investigate the
impact of the representations on RE approaches
and previous work on RE still mainly focuses on syn-
tactic dependency trees. Therefore, the literature
lacks a thorough evaluation of different graph struc-
tures and their combinations for RE with GNNs.

We present a deep investigation of several graph
representations for the RE task and analyze them
individually and in combinations. We build upon the
research conducted by Yu et al. (2022) as we inves-
tigate different graph representations for RE. Fur-
thermore, we go beyond by examining enhanced
graph representations that incorporate KG facts.

3. Models and Graph
Representations

In our experiments, we utilize a GNN architecture
comprising two stacked GNN layers with a linear
layer for relation classification. The architecture is
shown in Figure 1.

The GNN layers encode the graph representa-
tion of the input sentence containing the two entities
to be classified. We use Glove token embeddings,
or a pre-trained but non-trainable BERT to derive
token embeddings, and RDF2Vec for the KG en-
tities. These embeddings serve as node features
for the given graph.

To focus this investigation on the different graph
representations, we decided to freeze the encoding
model and do not investigate trainable encoders,
like an end-to-end trainable BERT encoder, to de-
rive token embeddings. GNN-based RE models
that use an end-to-end trainable encoder are able to
achieve state-of-the-art performance (Zhang et al.,
2018a; Guo et al., 2019; Tian et al., 2021).

After the two GNN layers, the resulting represen-
tations of the subject and object entities are used
as input to the linear classification layer. In the case
of multi-word entities, we rely on the representation
of the token with the largest number of outgoing
syntactic dependencies.

3.1. Graph Representations

In order to apply this GNN model for RE, we rep-
resent tokens as nodes and connect them through
(typed) edges to obtain a graph. The investigated
graph structures are:
1) Tokens connected in a linear chain (chain), in
the same order as they occur in the text.
2) Every token connected to every other token, what
leads to a fully connected graph (fully) and allows
every token to access the features of every other
token.
3) Tokens connected according to syntactic depen-
dencies (syn).
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Figure 1: GNN model architecture.The model operates over a given graph with given input node features
h0
i that are derived by embedding the token or KG entity by a suitable embedding model. h(l)

i denotes the
features of token i at layer l of the GNN. In this context, h(2)

s and h
(2)
o denote the feature representation of

subject and object entity after two GNN layers. h(2)
s and h

(2)
o are then feed into the linear layer for relation

classification.
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Figure 2: An example of a graph that combines the three graph representations chain, syn, and sem
(colored orange, green, purple).

4) Tokens connected through higher order syntactic
dependency relations (highsyn) according to Tian
et al. (2022). Here, tokens are related if there are
at most two tokens in between when traversing
the syntactic dependency tree, directly connecting
tokens that are syntactically close. We refer to Tian
et al. (2022) and App. A for more details.
5) Tokens are connected according to their seman-
tic dependencies (sem) in the form of the latent
PropBank-based (Palmer et al., 2005) predicate
argument structure derived by means of Semantic
Role Labelling (Shi and Lin, 2019).

We evaluate all possible combinations of these
methods. An example graph is shown in Figure 2.

3.2. Graph Representations with
Additional Background Knowledge

We investigate the integration of background knowl-
edge from a KG into the graphs. To do so, new
nodes are created, representing the entities in-
volved in the relations. The node features are
derived from the background KG (nodes). These
nodes are then connected to the corresponding
entity mentions. We only connect subject and ob-
ject entity mentions to their corresponding KG enti-
ties. Additionally, we consider adding the shortest
paths (s.p.) to the graph. We use the shortest
path between subject and object entity in the KG,
and include any external entity present on these

paths as additional nodes, as well as any edge con-
necting them. We refrain from explicitly adding an
edge between a node on the shortest path and any
node representing an entity mentiond in the text.
An example is shown in Figure 3.

4. Experiments

We investigate the impact of using different graph
structures as graph representations on the task of
RE by training and evaluating multiple GNN mod-
els.1

In order to derive syntactic dependencies, we
rely on Spacy,2 while for semantic dependencies
we make use of the AllenNLP library3 described in
(Gardner et al., 2018). As node features, we use
100 dimensional Glove embeddings4 (Pennington
et al., 2014), or 768 dimensional contextual BERT
embeddings (Devlin et al., 2019).

We automatically determine the best GNN hy-
perparameter settings using the hyperparameter

1We use PyTorch Geometric to implement our GNNs,
github.com/pyg-team/pytorch_geometric.

2See spacy.io/.
3See github.com/allenai/allennlp.
4We also experimented with the 300 dimensional em-

beddings, and found the results to be interchangeable.
For runtime optimization reasons, we opted for the lower
dimensional embeddings in the final experiments.

github.com/pyg-team/pytorch_geometric
spacy.io/
github.com/allenai/allennlp
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search framework ASHA (Li et al., 2020), which ap-
plies intelligent early-stopping and supports large-
scale parallelization. The main hyperparameter of
our model is the type of the GNN layers (i.e., GCN,
R-GCN, R-GAT) as described in Section 2. Fur-
thermore, these models have hyperparameters like
the dimensionality of the GNN layers and linear
layers (64, 120, 240), the learning rate (8 samples
from 10−3 to 10−5), and the batch size (32, 64, 128).
In addition, we evaluate the impact of i) adding re-
verse edges, ii) adding self-loops to each node such
that its previous feature vector can be accessed by
itself, and iii) exploiting the labels of edges.

We used the F1 score as the criterion to select
the best model. Since unpromising runs are termi-
nated at an early stage, not all model configurations
are trained until convergence and evaluation results
are not produced for all the considered model con-
figurations.

We evaluate the graph representations on two
English RE datasets that are linked to Wikidata and
on the commonly used RE benchmark SemEval
2010 Task 8 dataset to validate our models.

The required property of the evaluation datasets
was that all subjects and objects of a relation are an-
notated with their corresponding Wikidata ID, such
that background information can be used. However,
there is a lack of RE datasets that are annotated
with Wikidata entities as most datasets are anno-
tated with Freebase entities and relations (Mintz
et al., 2009). Therefore, we created our own
datasets based on FewRel and T-REx.

Moreover, to validate that our models are solv-
ing the RE task sufficiently, we run the standard
evaluation without background knowledge on the
SemEval 2010 Task 8 dataset.

In detail, we consider the following datasets:
1) FewRel (custom): FewRel (Han et al., 2018;
Gao et al., 2019) is a large RE dataset with entity
mentions and relations annotated with their cor-
responding Wikidata IDs. It was created through
a combination of distant supervision and human
annotation. Originally developed for few-shot RE,
we repurpose it for standard RE by merging its
train and val splits. These splits encompass
sentences expressing 64 and 16 distinct relations,
each with 700 examples, totaling 56, 000 sentences.
The combined dataset is then randomly split into
train/dev/test splits with percentages 70/15/15.
In FewRel, all subjects and objects of a relation
are annotated with their corresponding Wikidata ID,
and, therefore, there cannot be a subject or object
which has no Wikidata ID in our FewRel (custom)
dataset, too.
2) T-REx (custom): We randomly sampled 1000
sentences for each relation occurring at least 1, 000
times from the T-REx dataset (Elsahar et al., 2018),
which was created by an automatic alignment of

Wikipedia abstracts and Wikidata triples. We only
selected sentences in which both, subject and ob-
ject are annotated with Wikidata IDs. Therefore,
all subjects and objects of a relation are annotated
with their corresponding Wikidata ID. This dataset
contains 228, 000 sentences expressing 228 differ-
ent relations.
3) SemEval 2010 Task 8: This dataset consists of
8, 000 human-annotated training and 2, 717 human-
annotated test sentences with a relation between
two given nominals. We use 20% of the train set
for validation (Hendrickx et al., 2010). However,
the publicly available test set was not modified to
ensure comparability to other work on RE. Since
this dataset is not annotated with any KG IDs, we
use it only to evaluate the different types of graph
representations for RE, and not the knowledge in-
jection.

As background knowledge, we rely on two KGs,
namely Wikidata5 (Vrandečić and Krötzsch, 2014)
and WordNet (Fellbaum, 1998). Wikidata is build
by many editors and partially automatic. It encom-
passes data about entities such as people, places,
organizations, or abstract topics, along with de-
tails about their interconnections and relationships.
WordNet is a manually created lexical database
that categorizes nouns, verbs, adjectives, and ad-
verbs into synsets. These synsets are connected
through conceptual-semantic and lexical relations,
forming a KG that captures the interconnections
between different linguistic elements.

The features for the added KG nodes are de-
rived via RDF2Vec (Ristoski and Paulheim, 2016).6
RDF2Vec is a method that derives embeddings for
the entities and relations in a KG. In case that the
KG contains facts that are relations-to-be-predicted,
they are removed from the dataset, so they do
not affect the embeddings. We remove triples
contained in the RE datasets from our Wikidata
graph before we derive the embeddings. No triples
needed to be removed to derive the WordNet fea-
tures, as no relation in WordNet can inadvertently
reveal the relations that will be predicted for any of
our datasets. The derived features share the same
dimensionality of the other nodes’ embeddings and
are used as vector of newly created nodes which
are connected to their associated entity mention’s
tokens.

For Wikidata, the integration of shortest paths
between entities in KGs can be valuable for RE.
Therefore, nodes are created for every entity on the
path between the mentions, and connected among
themselves, as shown in Figure 3. In the majority
of cases, the shortest paths consist of only one

5We use the Wikidata dump from October 2022.
6RDF2Vec embeddings are trained using the

jRDF2Vec implementation described by Portisch et al.
(2020), https://github.com/dwslab/jRDF2Vec.

https://github.com/dwslab/jRDF2Vec
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Figure 3: Integration of the shortest path (shown in pink) between Leonardo da Vinci and Mona Lisa in
Wikidata into the chain graph. The Wikidata entity IDs Q762, Q12418, and Q1474884 represent Leonardo
da Vinci, High Renaissance, and Mona Lisa, whereas the Wikidata property ID P135 expresses the
movement relation.

entity positioned between the subject and object of
the relation intended for classification.

We evaluated two simple models, both using a
feedforward neural network with two layers and a
classification layer (denoted as Linear-NN), to com-
pare our GNN models that encode graph structure
against those operating on text-based embeddings.
One model takes as input the concatenation of the
word embeddings of the two entity mentions, while
the second one uses RDF2Vec features for subject
and object.

Our code is available on GitHub.7

5. Results

The best performing model across all experiments
is based on a two layer R-GCN encoder with self-
loops and reverse edges, and a hidden dimension
of 120 (Glove), respectively 240 (BERT ) for the GNN
layers and linear layers. The model is trained with
a batch size of 64 and a learning rate of 0.0001.

Graph Representations Our results, shown in
Table 1, Table 3, and Table 4, show that the models
using BERT features perform better compared to
those using Glove features for all graph representa-
tions. The input graph representations do not lead
to consistent performance across all datasets.

The evaluation results of the graph structures on
FewRel (custom), displayed in Table 1, shows that
the best performance is reached by using syntactic
dependencies with an F1 score of 0.754, followed by
higher order syntactic dependencies (F1 of 0.745),
and by the linear chain (F1 of 0.703). Regarding the
models that operate on a combination of multiple
graph representations, the combination of syntactic
dependencies and the fully connected token graph
leads the best results and achieves an F1 score of
0.764.

On the T-REx (custom) dataset, the evaluation
scores are shown in Table 3, the best performance
is achieved by the model operating over syntactic
dependencies with an F1 score of 0.697, followed by
the fully connected graph (F1 of 0.693) and by the

7See github.com/Nolanogenn/re_with_gcn.

linear chain (F1 of 0.689). For the combined graph
representations, the combination of the linear chain
and higher order syntactic dependencies shows the
best results with an F1 score of 0.761.

The scores for the SemEval dataset, shown in
Table 4, show that the best performance is reached
by a model operating over the graph of syntactic de-
pendencies with an F1 score of 0.786. The second-
best model uses the higher order dependencies
(F1 of 0.766), and the third-best model uses the
semantic dependencies (F1 of 0.745). For the com-
bined representations, the combination of syntactic
dependencies and semantic dependencies shows
the best results with an F1 score of 0.786.

Graph Representations with Additional Back-
ground Knowledge The impact of adding KG
features to the graph consisting of the fully con-
nected graph and the syntactic dependency graph
(denoted fully+syn) on the performance of the mod-
els is shown in Table 2 for the FewRel (custom)
dataset and the T-REx (custom) dataset. The Se-
mEval dataset was not evaluated with additional
KG features, as the entities in this dataset are not
linked to a KG.

The additional Wikidata or WordNet features lead
to an improvement of the scores in all cases.

All GCN models that use Wikidata or WordNet
features outperform the NN baselines that use Wiki-
data RDF2Vec features only or word embedding
features only.

On the FewRel (custom) dataset, the BERT
model that uses the combined graph of syntactic
dependencies and the fully connected graph can
be improved from an F1 score of 0.764 to an F1 of
0.82 (additional Wikidata nodes), 0.859 (additional
Wikidata shortest path), respectively 0.763 (addi-
tional WordNet nodes) by using additional back-
ground knowledge.

By adding additional background knowledge to
the combined graph of syntactic dependencies
and the fully connected graph, the F1 scores of
the BERT model on the T-REx (custom) dataset
improve from 0.714 to 0.746 (additional Wikidata
nodes), 0.791 (additional Wikidata shortest path),
respectively 0.729 (additional WordNet nodes).

github.com/Nolanogenn/re_with_gcn
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Table 1: General evaluation of the different graph representation and their combinations on the FewRel (cus-
tom) dataset.

Graph Representation Glove BERT
F1 P R F1 P R

chain 0.44 0.445 0.468 0.703 0.704 0.71
fully 0.484 0.476 0.515 0.699 0.705 0.71
syn 0.566 0.566 0.579 0.754 0.757 0.757
sem 0.388 0.407 0.418 0.667 0.666 0.676
highsyn 0.594 0.539 0.612 0.745 0.746 0.749
chain + syn 0.571 0.57 0.589 0.75 0.753 0.754
chai + sem 0.516 0.525 0.533 0.723 0.726 0.728
fully + syn 0.611 0.612 0.627 0.764 0.766 0.767
fully + sem 0.489 0.483 0.516 0.708 0.711 0.715
syn + sem 0.574 0.569 0.591 0.753 0.754 0.756
chain + highsyn 0.574 0.565 0.6 0.745 0.747 0.749
fully + highsyn 0.603 0.6 0.622 0.75 0.753 0.754
highsyn + sem 0.577 0.582 0.608 0.743 0.744 0.748
chain + syn + sem 0.583 0.587 0.6 0.751 0.754 0.754
fully + syn + sem 0.608 0.612 0.623 0.753 0.755 0.757
chain + highsyn + sem 0.578 0.572 0.603 0.745 0.747 0.748
fully + highsyn + sem 0.586 0.576 0.611 0.746 0.749 0.748

Table 2: Evaluation of graph representations enhanced with additional KG features from Wikidata and
WordNet on FewRel (custom) and T-REx (custom). The Glove models are provided with 100 dimensional
embeddings, whereas the BERT models are provided with 768 dimensional embeddings.

Model & Graph Representation Glove BERT
F1 P R F1 P R

FewRel (custom)
Linear-NN: word embeddings 0.277 0.323 0.294 0.382 0.436 0.3
Linear-NN: RDF2Vec embeddings 0.597 0.618 0.606 0.664 0.675 0.669
GCN: syn 0.566 0.566 0.579 0.754 0.757 0.757
GCN: fully + syn 0.611 0.612 0.627 0.764 0.766 0.767

+ Wikidata nodes 0.784 0.778 0.803 0.82 0.823 0.823
+ Wikidata shortest path 0.835 0.834 0.845 0.859 0.86 0.861
+ WordNet nodes 0.684 0.685 0.697 0.763 0.765 0.766

T-REx (custom)
Linear-NN: BERT 0.082 0.15 0.103 0.239 0.304 0.251
Linear-NN: RDF2Vec 0.438 0.488 0.475 0.506 0.548 0.525
GCN: syn 0.406 0.399 0.451 0.697 0.698 0.72
GCN: fully + syn 0.45 0.436 0.498 0.714 0.708 0.735

+ Wikidata nodes 0.661 0.64 0.712 0.746 0.35 0.776
+ Wikidata shortest path 0.685 0.664 0.734 0.791 0.782 0.814
+ WordNet nodes 0.561 0.572 0.592 0.729 0.73 0.746

Overall, the best result can be achieved when
adding the shortest path in Wikidata between sub-
ject and object to the graph representation.

6. Discussion

Graph Representations The input graph repre-
sentations do not lead to consistent performance
across all datasets. This might be caused by the
sentence structure or sentence complexity in the
datasets.

We observe that the models that use Glove fea-
tures show good scores for the combined represen-
tation of fully + syn + sem across all datasets, and
always perform slightly better than the individual
representations.

For the BERT models, the different representa-
tions do lead to different performances across the
datasets, and we can not observe a general trend.
However, on the FewRel (custom) dataset and the
T-REx (custom) dataset, combining syntactic de-
pendencies with other graph representations leads
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Table 3: General evaluation of the different graph representation and their combinations on the T-
REx (custom) dataset.

Graph Representation Glove BERT
F1 P R F1 P R

chain 0.351 0.362 0.386 0.689 0.695 0.709
fully 0.366 0.359 0.417 0.693 0.696 0.712
syn 0.406 0.399 0.451 0.697 0.698 0.72
sem 0.33 0.338 0.362 0.663 0.665 0.688
highsyn 0.433 0.419 0.483 0.674 0.673 0.703
chain + syn 0.42 0.408 0.465 0.714 0.718 0.731
chain + sem 0.389 0.38 0.431 0.688 0.686 0.711
fully + syn 0.45 0.436 0.498 0.714 0.708 0.735
fully + sem 0.39 0.386 0.433 0.687 0.686 0.712
syn + sem 0.426 0.41 0.472 0.699 0.696 0.721
chain + highsyn 0.431 0.414 0.483 0.761 0.763 0.762
fully + highsyn 0.431 0.411 0.488 0.666 0.66 0.699
highsyn + sem 0.424 0.41 0.477 0.645 0.645 0.693
chain + syn + sem 0.436 0.417 0.483 0.697 0.689 0.721
fully + syn + sem 0.453 0.443 0.497 0.658 0.646 0.689
chain + highsyn + sem 0.43 0.409 0.484 0.653 0.639 0.687
fully + highsyn + sem 0.427 0.407 0.482 0.646 0.63 0.681

Table 4: General evaluation of the different graph representation and their combinations on the Se-
mEval 2010 Task 7 dataset.

Graph Representation Glove BERT
F1 P R F1 P R

chain 0.686 0.689 0.688 0.715 0.716 0.718
fully 0.656 0.669 0.658 0.69 0.691 0.692
syn 0.756 0.76 0.757 0.786 0.783 0.791
sem 0.705 0.72 0.702 0.745 0.749 0.745
highsyn 0.752 0.758 0.75 0.766 0.769 0.766
chain + syn 0.752 0.757 0.749 0.776 0.775 0.779
chain + sem 0.746 0.752 0.743 0.777 0.777 0.78
fully + syn 0.76 0.766 0.756 0.776 0.775 0.781
fully + sem 0.716 0.722 0.718 0.748 0.75 0.749
syn + sem 0.764 0.768 0.762 0.786 0.788 0.787
chain + highsyn 0.745 0.747 0.746 0.761 0.763 0.762
fully + highsyn 0.742 0.747 0.741 0.771 0.772 0.773
highsyn + sem 0.751 0.754 0.749 0.771 0.77 0.776
chain + syn + sem 0.759 0.765 0.755 0.781 0.779 0.784
fully + syn + sem 0.768 0.773 0.766 0.785 0.785 0.789
chain + highsyn + sem 0.741 0.752 0.747 0.768 0.766 0.775
fully + highsyn + sem 0.754 0.757 0.753 0.764 0.768 0.763

to improved scores compared to using only syntac-
tic dependencies, whereas this worsens the scores
on the SemEval dataset.

For the Glove models, the combination of multi-
ple graph representations generally leads to better
scores than using the individual representations.
This trend can not be observed for the BERT, and
we can assume that this information is already en-
coded in the BERT embeddings. Therefore, the
graph representations do not provide additional
context information, but rather confuse the model

by adding redundant information.
All in all, combinations of graph representations

can add additional information that can be used
by GNNs for RE. But it must be noted, that the
benefit is low and differs depending on the dataset.
However, we were able to show that even simple
graph representations without linguistic knowledge,
like a linear chain of tokens or the fully connected
graph of tokens, still lead to adequate models.

Our GNN model is limited to two layers, which
leads to a receptive field of two graph hops. There-
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fore, models operating over representations that
connect distant entities should clearly outperform
those models that can only access a certain num-
ber of tokens in the graph neighborhood. However,
this assumption is not always the case. Therefore,
we assume carefully selecting a suitable graph rep-
resentation instead of simply providing all available
tokens might be valuable.

Graph Representations with Additional Back-
ground Knowledge We evaluate different repre-
sentations acquired through parsing the sentence
structure, and enriched by background knowledge.

Adding Wikidata information could make a direct
comparison seem unfair. The additional KG infor-
mation could be helpful for the model as they pro-
vide additional information about the subject and
object entity not expressed in the sentence. But the
additional information could also be a drawback to
the models. Background knowledge might contain
irrelevant information for the task, potentially intro-
ducing noise and complicating the model’s focus
on relevant features.

In contrast, the integration of WordNet features
does not add any unfair advantages to the model,
as this is commonly done in NLP. Providing addi-
tional external resources like WordNet information,
part-of-speech tags, dependency information, and
named entity tags is often done for RE (Shen and
Huang, 2016; Zhang et al., 2015).

Nevertheless, to prevent confusion, we present
the results of models with additional background
knowledge separately in dedicated tables.

In general, the incorporation of information from
Wikidata as additional nodes connected to the sub-
ject and object nodes, or as the shortest path be-
tween both, has a positive impact. For instance,
on FewRel (custom), the best model that uses the
Wikidata shortest paths achieves an F1 score of
0.859. This is an increase of 0.095 in F1 compared
to the base fully+syn GNN model without KG fea-
tures.

WordNet features do increase the performance
of all models, too. WordNet provides additional
information about synonyms and related concepts,
as well as various semantic relationships between
words to the RE model. According to our results,
the WordNet information is helpful for GNN-based
RE.

However, adding the richer and more diverse
Wikidata features to the graph increases the scores
more than adding WordNet features. This might
be because Wikidata provides more background
knowledge, i.e., the relations entities are involved
in the KG, which might be more valuable than the
WordNet information.

All GCN models that use some sentence graph
representation and additional KG features outper-

form the Wikidata RDF2Vec-based and word em-
bedding based NN model. Especially, adding the
Wikidata shortest path leads to best scores. This
shows a successful fusion of text and KG infor-
mation in a common graph representation, as the
model that applies fusion outperforms the individual
models.

7. Conclusion

Our results show that combining multiple graph rep-
resentations can improve the model’s predictions.
Although our experiments revealed that none of
the graph representations consistently performs
best across multiple datasets, we can clearly see i)
that most representations improve the performance
compared to the standard graph representation,
and ii) that the representations have a strong impact
on performance, which makes the type of graph
representation an important hyperparameter that
is worth to be tuned.

Furthermore, the integration of background
knowledge from Wikidata or WordNet positively
impacts scores and can lead to an improvement of
close to 0.1 in F1.

In future work, we will investigate methods to in-
tegrate structured background knowledge beyond
additional subject and object nodes and shortest
paths between them. Furthermore, we will investi-
gate how the model performance can be improved
by removing wrong facts and adding missing facts
to the KG.

8. Limitations

The present work has some minor limitations that
should be acknowledged.

Firstly, our models do not reach state-of-the art
performance. However, beating state-of-the-art per-
formance was not the goal of this work. Instead,
we investigate of different graph representations.
As the difference to state-of-the-art is small, one
can assume our GNN model to be set up correctly.

Secondly, even though our GNN models have
significantly fewer parameters than BERT (9M vs.
110M), our best models rely on token features de-
rived from BERT. However, our training is faster
than training BERT from scratch.

Thirdly, it is important to note that incorporat-
ing facts from a KG could make the model biased
to the information stored in the form of triples in
the KG instead of the information expressed in the
sentence context. Future research could use ex-
plainability methods or attention mechanisms to
determine which information the model prioritizes.



9

Ethics

Any potential biases present in the relation extrac-
tion datasets or knowledge graphs used in our ap-
proach can impact the fairness and accuracy of the
extracted relations. However, it is important to note
that our work primarily focuses on the evaluation of
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duce new ethical biases themselves. Nevertheless,
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Figure 4: Higher order syntactic dependencies.
Solid lines represent the syntactic first order de-
pendencies, whereas the dashed lines represent
the second order dependencies.
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A. Higher Order Syntactic
Dependencies

We implement higher order syntactic dependencies
as proposed by Tian et al. (2022). The syntactic
dependencies serve as first order dependencies.
Based on those, second and third order dependen-
cies are added.

For example, second order dependencies es-
tablish directed connections between two tokens,
tokeni and tokenj , if there exists a single token,
tokenx, along the non-directional shortest path con-
necting tokeni and tokenj . In detail, we define two
distinct relation types based on the direction of the
edges in the graph. If the connection between the
tokens is tokeni → tokenx → tokenj , we establish
the ancestor relation pointing from tokeni to tokenj .
If the relations are tokeni ← tokenx → tokenj , we
add the sister relation between tokeni and tokenj .
Examples of the two relations are shown in Fig-
ure 4.

The third order dependencies are defined simi-
larly for the case of two tokens in between tokeni

and tokenj , along the non-directional shortest be-
tween them.

We do not add inverse relations, as this is a hy-
perparameter of the graph preprocessing.
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